EE 508
Lecture 14

Statistical Characterization of
Filter Characteristics



Review from last lecture

Effects of manufacturing variations on components

—1+ J

4ﬂ L C

» Arigorous statistical analysis can be used to analytically predict how
components vary and how component variations impact circuit
performance

/|

» Monte Carlo simulations are often used to simulate effects of component
variations
Requires minimal statistical knowledge to use MC simulations
Simulation times may be prohibitively long to get useful results
Gives little insight into specific source of problems
Must be sure to correctly include correlations in setup

» Often key statistical information is not readily available from the foundry



Review from last lecture
Modeling process variations in semiconductor processes

AN
R

X= XNOM Txreroc PXrwarer TXroiE TXRLcRAD TXRLVAR

XRPROC? xRWAFER, XRDIE’ *RLVAR Often assumed to be GaUS|an W|th Zero mean

Magnitude of xg grap IS Usually assumed Gaussian with zero mean, direction
is uniform from 0° to 360°

O-PROC >> GWAFER >> GDIE
O-DIE >> GL VAR

>> (7|

Opie GRAD|

1
O Lvar Strongly dependent upon area and layout Oryar ~ —%

o, ~ Perimeter

Relative size between 0,,,,g and 0|grap dependent upon A, P, and process



Review from last lecture .
Modeling process variations in semiconductor processes

AN
R

Statistics associated with value of dimensioned parameters (poles, GB,
SR,R,C,transresistance gains, transconductance gains, ... dominated by

XRPROC)

Statistics associated with matching/sensitive dimensionless parameters
such as voltage or current gains, component ratios, pole Q, ... (almost

always closely placed) dominated by xg, grap @Nd xg yar (Pecause locally xgproc;
Xrwarer, Xroie are all correlated and equal)

Gradients are dominantly linear if spacing is not too large

Special layout techniques using common centroid approaches can be
used to eliminate (or dramatically reduce) linear gradient effects so, if
employed, matching/sensitive parameters dominated by xg,\ar DUt
occasionally common centroid layouts become impractical or areas
become too large so that gradients become nonlinear and in these cases
gradient effects will still limit performance

Higher-order gradient effects can be eliminated with layout approaches that
cancel higher “moments” but area and effort may not be attractive



Review from last lecture

Statistical Modeling of dimensioned parameters

Example:

Determine the standard deviation of the pole frequency (or band edge) of
the first-order passive filter.

X Vour

AY

!

Assume the process variables are zero mean Gaussian variable
with standard deviations given by

=02 o, =01

RN oM CN oM

Assume further that the effects of all other random components can be neglected

X = XnomHXreroc Tawacer T3RGE rearan PXREvAR

O

RRPR ocC



Review from last lecture

Statistical Modeling of dimensioned parameters

Example (cont):

Determine the standard deviation of the pole frequency (or band edge) of
the first-order passive filter.

R Vour
1
Vin — P= =<
RC
Assume the process variables are zero mean Gaussian variable
with standard deviations given b
WeNLY 5, =02 o, =0.1
RPROC RPROC
RNOM CNOM
= + —
R = Ryom*Rproc C = CromtCproc
o= 1 ~ 1
(RNOM+RPROC)(CNOM+CPROC) RNOM(:NOM + F{NOM(:PROC + CNOMRPROC + RPROC(:F’ROC

« pis a multivariate random variable

» The pdf of p is extremely complicated



. Determine the standard deviation of the pole frequency
Example (Cont)' (or band edge) of the first-order passive filter.

R

Vour

1
= p_RC

Ay

Theorem: The sum of uncorrelated Gaussian random variables is a
multivariate Gaussian random variable

Theorem: If X, ... X, are uncorrelated random variables with standard
deviations o,, 0,, ... 0., and a,,a,, ... a,, are constants, then the standard

deviation of the random variable ¥ = ;aixi Is given by the expression

m

2 2

Oy = \/zai o
i1




Example (cont): Determine the standarq deviation of t_he pole frequency
(or band edge) of the first-order passive filter.

R

Vour
V ot
l

The random variable p can be approximated by

1
Ryom + Reay ) (CNOM +Cray )

+R

T

+R

(RRAN = RNOM + RRPROC + RRWAFER RDIE RLGRAD + RRLVAR and CRAN = CNOM + CRPROC + CRWAFER + CRDIE + CRLGRAD + CRLVAR )

Unfortunately the pdf p which is the reciprocal of the product of sums of
Gaussian variables is very difficult to obtain.

Observe p can be expressed as:

1 1 1
o
(RNOM +RRAN)(CNOM + CRAN) RuonCnow {1+ Ry v }{H Crav }

NOM CNOM



Example (cont): R

Vour
Determine the standard deviation of the pole frequency D= i
(or band edge) of the first-order passive filter. Vi T < RC

1 1 1
(RNOM T RRAN)(CNOM + CRAN) RnomCnom {1 4 Ryy }{1 + Cran }
Crom

NOM
But Rpan<<Ryom and Cran<<Cyom

It thus follows from a truncated power series expansion of the two-variable fraction

NOMCNOM NOM CNOM

Neglecting the product of two small quantities

RNOMC:NOM I?NOM CNOM

These operations were used to linearize p in terms of the random variables !

Note that p is the sum of two Gaussian random variables that are assumed to be
uncorrelated so p is also approximately Gaussian



Example (cont):

Determine the standard deviation of the pole frequency Vi

(or band edge) of the first-order passive filter.

S (.
IQNOM(:NOM RNOM CNOM

It thus follows from the theorem that

1 2 2
O, 6 = GR + GC
p R C RAN RAN

1

But the nominal value of the pole is Pnom =
IQNOM(:NOM

It thus follows that

2 2
o P _\/GRRAN +GCRAN

Pnom Rnowm Cnowm

P ~N| Lo |
Pnom Prow

Observe:




Example (cont):
Determine the standard deviation of the pole frequency
(or band edge) of the first-order passive filter.

Vin

A}

CNOM é

Pnom

o, =027 +0.1> =0.22 I



Example (cont):

R Vour 1
Vin ~ C P~ Re
’ o, =4/022+0.1> =0.22

Pnom

1. Determine the 30 range in the pole location

2. Determine the percent of the process lots that will have a pole with
mean that is within 10% of the nominal value

3. What can the designer do to tighten the band edge of this filter?



Example (cont):

R Vour 1
Vin ~ C P~ Re
’ o, =4/022+0.1> =0.22

Pnom

1. Determine the 30 range in the pole location

The 30 range is simply 0.34 < P <1.66

Pnowm

So, if the nominal pole location is 10KHz, the average value of the pole location
from lot to lot will vary (in the 30 sense) between 3.4KHz and 16.6KHz



Example (cont):
Vour 1

P~ Re

Vin

A}
/|
@)

‘ .

~/0.2* +0.1> =0.22

P
Pnom

2. Determine the percent of the process lots that will have a pole with
mean that is within 10% of the nominal value

1
Observe a 10% window is — |0, =0450 ,
22
: Pnom Pnom
Recall _P_ _N Lo, Fora ko 4 760
Prom Pom

window the probability of being inside that
window is the area under the pdf curve
between 1— ko and 1+ko

P4

~ pNOM
=INom____N(0,1
p==" (0.1)

\ B

Observe

1-ko 1 1+ko

p
Pnom




Example (cont):

Vour 1
Vin = © P~ Re
’ o, =4/022+0.1> =0.22

Pnom

2. Determine the percent of the process lots that will have a pole with
mean that is within 10% of the nominal value

1
Observe a 10% window is | =5 |7 & =0.450
) Pnom Pnom X
5~N(0,1) -
1-0450 , <—P<1-0450 , —0.45 < p < 0.45
Pnom pNOM E@%i P -1
Pnom

\ B

For a Gaussian variable, this area is given by A

8,00= 2Fuyo1 (K) -1 = 2Fyy (0.45)—1

prob



Offset Voltage Distribution

Pdf of zero-mean Gaussian distribution

A f(x)
X
-ko ko >
Percent between: +0 68.3%
+20 95.5%

+30 99.73%



£ 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.20000 050398 050798 051197 051583 0.51994 0.52392 0.52790 0.53188 0.53586
0.1 0.53983 0.54380 054776 055172 0.55567  0.55962 0.56356 056749 0.57142 0.57535
0.2 0.57926 0.5831F 058706 059095 0.59483  0.59871 0.60257 060642 0.61026 0.61409
0.3 0.61781 062172 062352 062930 0.63307 m 0.64058 064431 0.64803 0.65173
0.4 0.65542 0.65910 066276 066640 0.67003 (0.67364 067724 0.68082 0.68439 0.68793
0.5 0.69146 0.59497 069847 0.70194 0.70540 DFeesd 0.71226 0.71566 0.71904 0.72240
0.6 0.72575 0.72807 073237 073565 0.738891 0.74215 0.74537 0.74857 0.75175 0.754580
0.7 0.75804 0.76115 076424 076730 077035 077337 077637 077935 0.78230 0.78524
0.6 0.78814 0.79103 079389 079673 0.79955  0.80234 0.80511 080785 0.81057 0.81327
0.8 0.81584 0.81858 0821271 082381 0.82639  0.82894 0.83147 0.83398 0.83646 0.838391
1.0 0.84134 084375 084614 0584849 085083  0.85314 0.85543 083768 0.85993 0.86214
11 0.86433 0.86650 086864 087076 0.87286  0.87493 087698 087900 0.88100 0.88298
1.2 0.88403 0.88686 088877 083065 0.89251 0.89435 0.89617 089796 0.88973 0.890147
1.3 0.90320 0.90490 090658 090824 0.90988 091149 0.91308 09146868 0.91621 0.891774
1.4 0.91924 092073 092220 092364 0.892507  0.92647 0.92785 092922 0.93056 0.83189
1.5 0.93319 093448 093574 093699 0.83822 093943 094062 094178 094285 0.84408
1.6 0.94520 094630 094738 0594845 0.94950  0.95053 093154 093254 095352 0.85449
1.7 0.95543 0.95637 095728 095818 0.95907  0.95994 0.96080 096164 096246 0.86327
1.8 0.96407 096485 096562 096638 096712  0.96784 0.96856 096926 0.96995 0.897062
1.9 0.97128 097193 097257 097320 0.97381 0.97441 0.97500 087558 0.97615 0.87670
2.0 0.97725 0897778 097831 097882 087932 097982 0.98030 098077 098124 0.88169
2.1 0.98214 098257 098300 0593341 0.893382  0.98422 0.98461 0.98500 0.98537 0.88574
2.2 0.98610 098645 098679 098713 098742 098778 0.98809 0.98840 0.98870 0.88899
2.3 0.98928 0.985956 098983 0599010 0.99036  0.99061 0.99086 099111 099134 0.89158
2.4 0.99180 0.99202 0959224 099245 0.99266  0.99286 0.99305 0899324 0.99343 0.89361
2.5 0.99379 099396 099413 0599430 0.99446  0.99461 0.99477 099492 0.99506 0.89520
26 0.99534 099547 099360 099573 0.99585  0.99598 0.99609 0939621 0.99632 0.899643
27 0.99653 0.99664 099674 099683 0.996893  0.99702 0.99711 099720 099728 0.89736
2.8 0.95744 099752 0599760 0599767 0.99774  0.99731 0.99788 099795 0.95801 0.89807
29 0.99813 0.99819 099825 0599831 0.99836  0.99841 0.99846 0.99851 0.99856 0.89861
3.0 0.99865 099869 095874 099878 0.99882  0.99886 0.99889 099893 0.99896 0.89900
an 0.99903 099906 099910 099913 099916  0.99918 0.99921 099924 0.99926 0.89929
3.2 0.99531 099534 099936 0995938 0.99940  0.99942 0.99944 099946 0.99948 0.89350
3.3 0.99952 099953 099955 099937 0.99958  0.99960 0.99961 0.99962 0.99964 0.89965
34 0.99966 0.990968 099969 0939570 0.99971 0.899972 0.899973 099974 099975 0.899976
3.5 0.99977 0.99978 099978 0599979 0.99980 0.99981 0.99981 0.99982 0.99983 0.89983
3.6 0.99984 099985 099985 0995986 0.899986  0.99987 0.99987 099988 0.99988 0.89983
ar 0.99989 0995990 099950 05935930 0.99991 0.99991 099992 099992 0.999592 0.89992
3.6 0.99983 099993 099953 099924 (0.999894  0.99994 0.99994 0.99995 0.99995 0.899935
3.9 0.995985 099995 099996 0995996 0.9999¢  0.99996 0.99996 099996 0.99997 0.89997
4.0 0.99997 099997 099997 099997 0.99997  0.99997 0.99998 099998 0.99993 0.99998



Vour 1
Vin ~ C P~ Re
’ o, =4/022+0.1> =0.22

Pnom

2. Determine the percent of the process lots that will have a pole with
mean that is within 10% of the nominal value

8,0= 2Fyor (0.45)-1

prob

0, .= 20.6736—-1=0.347

prob

Thus, approximately 35% of the wafer lots will
have a pole within 10% of the nominal value

\ B




Vour 1
Vin ~ C P~ Re
’ o, =4/022+0.1> =0.22

Pnom

3. What can the designer do to tighten the band edge of this filter?



Modeling process variations in semiconductor processes

ANAAN
R

» Most characteristics of interest in a filter (and many other circuits) are highly
nonlinear functions of multiple random variables

» Closed-form analytical expressions for pdf is often extremely difficult to
obtain

* For most practical circuits, random component is small compared to the
nominal component

« Linearization of characteristics of interest for purpose of statistical analysis is
usually quite accurate and drastically simplifies analysis

« Monte Carlo analysis is widely used for statistical characterization but is
often very time consuming and gives little insight into design optimization



Statistical Modeling of Dimensionless Parameters

R
R1 — ANAN—

<|7_V\/\\/‘/— ‘:> | Vour K=1+E—j

R1 Ria
VWA Vout Voura A%
vin (& Cis ~~Cia (E)Vina
SN v
1 1
= pA_
P RC 5= PA-P; RiaCia



Statistical Modeling of dimensionless
parameters - example

R
R1 — ANAN—

I al :

IN

Determine the standard deviation of the voltage gain K

Determine the yield if the nominal gain is 10 =1%

Assume a common centroid layout of R, and R, has been used and
the area of R, is 100u? and both resistors have the same resistance
density and R, is comprised of K-1 copies of R, . Neglect variable
edge effects in the layout

Assume also that: A =.01um op. =02

RN oM

A, is the Pelgrom matching parameter



Statistical Modeling of dimensionless
parameters - example

R
R1 — ANAN—

L Vour K=1+F;—f

IN

Determine the standard deviation of the voltage gain K

_ R+ R . R, R
K—1+Rj:+R?: K = 1+R1N(1+§2N R )
RZN(1+§2R)
K=1+ 2
R (1+52) = (100 Bo e

K = 1428 (14 (1 - fe)

1N



Statistical Modeling of dimensionless
parameters - example

R
R, —VW\V— K = 1+&
S Ve R
VIN
Determine the standard deviation of the voltage gain K
- R R Ron  Rin
1N N R, pproc = (KN _1)R1RPROC
K = K+(Ky —1)(%—@—’;) And, since a common centroid layout
Is used,
Ron = Roreroc + Rapgrap T Rorrran R,rarap @Nd Rirgrap are correlated
R = Ripproc T Rigorap + Ririvar Rpnin = ( K, —1) R ecrin

~ RZRPR RZR '‘RAD R2RLVAR RIRPR RIR 'RAD RlRLVAR
K = KN+(KN—1)( T ) R,rivar @nd Ryriyar are uncorrelated



Statistical Modeling of dimensionless
parameters - example

R
R Y K=1+=2
! VvV ‘>__ ouT R
Vin 1

Determine the standard deviation of the voltage gain K

K~ K +(K _1) Ry reroc +RorGraD T RoRLvar  Rorrroc TR rGRAD +RoRLVAR
— N N Ron Rin

(Ky=1)Rirproc +(Kn =1)Rirgrap +Rorvar Ry rproc + R rorap R rLv AR )

K = Ky+(Ky—1)( - - K
Since Ry =(Ky-1)Rqn

Ky-1)R +HKy-1)R R R +R +R
K~ K. + (K _ 1) (Ky 1RPROC T\ A N IRGRAD 4 29 revar _ 2ReROCHNiRGRaD 1 RLvAR
N N (KN _1)R1N R2N R1N

Ky—-1)R +HKy-1)R R +R R R
K ~ K +(K _1) ( N 1RPROC N 1RGRAD M RPROC T RGRAD 4 Z2RLVAR __ TIRLVAR
- N N (Kn—1)Rqn Rin Ron Rin

K+ (Ky —1)(R2F§§£AR = Rﬁjﬁ’*) K not dependent on Rgproc !

K

112



Statistical Modeling of dimensionless
parameters - example

R
F21 — ANAN—

L Vour K=1+F;—f

IN

Determine the standard deviation of the voltage gain K

K oz Ky (K —1) (S - g
Recall: O, = \/0-2 +0.1" =0.22 (p was the pole of a dimensioned parameter)

Pnom




Statistical characterization of local random
variations of resistors and capacitors

Theorem: If the perimeter variations and contact resistance are neglected,
the standard deviation of the local random variations of a resistor of area A is

given by the expression A
- P
O =

LN/
A, is a constant (has dimensions of ym) and is not related to areal!

Theorem: If the perimeter variations are neglected, the standard deviation of
the local random variations of a capacitor of area A is given by the expression

A is a constant (has dimensions of ym) and is not related to area!

Note both of these expressions are independent of the value of Rand C



Statistical characterization of local random
variations of MOS transistor parameters

Theorem: If the perimeter variations are neglected, the variance of the local
random variations of the normalized threshold voltage of a rectangular MOS
transistor of dimensions W and L is given by the expression

A%/TO ) A%,
V2 WL or as T “

Vin

2
G VT -
A%

Theorem: If the perimeter variations are neglected, the variance of the local
random variations of the normalized C.y of a rectangular MOS transistor of
dimensions W and L is given by the expression

2
2 — ACOX
7 Ty
COA?V

Theorem: If the perimeter variations are neglected, the variance of the local
random variations of the normalized mobility of a rectangular MOS transistor
of dimensions W and L is given by the expression

2 p

O =
= WL

UN

where the parameters A, are all constants characteristic of the process
(i.e. model parameters)



Statistical characterization of local random
variations of MOS transistor parameters

GR — e £ A
-~ C
Ry A N
2 2 2
2 ACOX 2 Au 2 _ AVTO
Oc, = Ou = °Vi T2 wL
Lo g, e WL o Vn,
OXN N

The parameters A, Ac, A, Acox, and Ay are often termed “Pelgrom”

parameters and are part of the PDK of a process

Matching properties of MOS transistors

MJM Pelgrom, ACJ Duinmaijer... - IEEE Journal of solid ..., 1989 - ieeexplore.ieee.org

The matching properties of the threshold voltage, substrate factor, and current factor of MOS
transistors have been analyzed and measured. Improvements to the existing theory are

given, as well as extensions for long-distance matching and rotation of devices. Matching ...

Yr 99 Cited by 3800 Related articles All 19 versions Sept 2020

The effects of edge roughness on the variance of resistors, capacitors, and
transistors can readily be included but for most layouts is dominated by the

area dependent variations

There is some correlation between the model parameters of MOS transistors but
they are often ignored to simplify calculations



Statistical Modeling of dimensionless
parameters - example

R
R1 — ANAN—

WD__VOUT K
V

IN

Determine the standard deviation of the voltage gain K

K ~ KN+(KN_1)(R2|§§£AR _Rléi:lAR)
ox = (Ky-1) [on, +00, Or =
RoN RIN Ry
1 1
~ (K —-1)A
GK ( " ) p\/ARZ +AR1

1 1
~ (Ky—-1)A
Ok ( N ) p\/(KN_l)AR1+AR1



Statistical Modeling of dimensionless
parameters - example

R
R1 — ANAN—

L Vour K=1+F;—f

IN

Determine the standard deviation of the voltage gain K

1 1
~ (Ky—-1)A
GK ( N ) p\/(KN_l)AR1+AR1




Statistical Modeling of dimensionless

parameters - example

R
R1 — ANAN—

S Y R

Determine the standard deviation of the voltage gain K

A
~ — 202
Ox = \/Aim\/KN(KN 1) A=01u  Ag,=100u? GiN—M
.01
oy = E\/KN (Ky—1) =.001, /Ky (Ky -1)
Ok ~.001 [1- 1
Ky N

 The standard deviation can be improved by increasing area but a 4X
increase in area is needed for a 2X reduction in sigma

* Note the standard deviation of the normalized gain is much smaller
than the standard deviation of the process variations



Statistical Modeling of dimensionless
parameters - example

R
R1 — ANAN—

L Vour K=1+F;—f

IN

Determine the standard deviation of the voltage gain K

o, =.001 [1- L
K V' K,

Determine the yield if the nominal gain is 10 +1%

ok =.001, /1-1 =.00095
10

K
K
K
KN

~ N(1, 0.00095)



Statistical Modeling of dimensionless
parameters - example

R
— A

IN

Determine the yield if the nominal gain is 10 £1%
K

K ——1
— = N(1, 0.00095
Ky ( ) AT N(0,1)
0.00095
9.9 <K<10.1 K
-1
K

K ~10<—N <10 These are 10

99 < K S 1.01 .00095 sigma values !
N
The gain yield is essentially 100%
K Could substantially decrease area or increase

-01< — -1<.01
K

\ gain accuracy if desired



Statistical Modeling of dimensionless
parameters - example

R
R1 — ANAN—

L Vour K=1+F.§—f

IN

Determine the yield if the gain is to be 10 *1%

the area of R, is and both resistors have the same resistance
density and R, is comprised of K-1 copies of R, . Neglect variable
edge effects in the layout

A5

o =0.2

RPR ocC

Assume a commtroid layout of R, and R, has been used and

RN oM

Note this is simply a 10X reduction in area from previous example and an
increase in A, by a factor of 2.5



Statistical Modeling of dimensionless

parameters - example

R
R1 — ANAN—

R TR

Determine the standard deviation of the voltage gain K

=0.2

Ok E\/ALFM\/KN(KN_I) A,=.025um Ag,=10um?  Rosoc

RN oM

o 292 \/K ) =.0079,/Ky, (Ky —1)

o, =.0079 /1-i
Ke Ky



Statistical Modeling of dimensionless
parameters - example

R1

R>
— ANAN—

<

IN

o

| Vour R

Determine the standard deviation of the voltage gain K

Ok

Kn

=~.0079 [1-—
K

1

N

Determine the yield if the gainisto be 10 1%

O

. =.0079, /1-i =.0075
o 10

K2 N@, 0.0075)
KN



Statistical Modeling of dimensionless
parameters - example

R
R1 — ANAN—

L Vour K=1+F.§—f

IN

Determine the yield if the nominal gain is 10 £1%

K K

— = N(1, 0.0075

Ky ( ) Ky =~ N(0,1)

0.0075
9.9 <K <10.1 K
K - Have dropped from 10 sigma
- N 1.33 si boundari
99 < £ <1.01 1.33< 0075 <1.33 to sigma boundaries
Ky '
% 2F 0 (1.33)-1 = 2*.9082-1 =0.8164
-.01< K -1< .01

Dramatic drop from 100% vyield to about 82% yield!

N



Statistical Modeling of Filter Characteristics

The variance of dimensioned filter parameters (e.g. w,, poles, band edges, ...)
is often very large due to the process-level random variables which dominate

The variance of dimensionless filter parameters (e.g. Q, gain, ...) are often
quite small since in a good design they will depend dominantly on local random
variations which are much smaller than process-level variations

The variance of dimensionless filter parameters is invariably proportional to the
reciprocal of the square root of the relevant area and thus can be managed

with appropriate area allocation



Linearization of Functions of a Random Variable

 Characteristics of most circuits of interest are themselves random variables

» Relationship between characteristics and the random variables often highly
nonlinear

« Ad Hoc manipulations (repeated Taylor’s series expansions) were used to
linearize the characteristics in terms of the random variables
Y=Y, +i(aixm)
« This is important because if the random variables are uncorrelated the
variance of the characteristic can be readily obtained

n
2 o 2 2
oy = E (al. axm)
i=1

o Yiéozn:(afajm)

Y
Yy i=1

1

« This approach was applicable since the random variables are small

* These Ad Hoc manipulations can be formalized and this follows



Formalization of Statistical Analysis

Consider a function of interest Y

Y:f(xlNasz’-"anvzleerR""an):f([XN]’[XR] )

This can be expressed in a multi-variate power series as

- | of o f
= ([X ] [X ])‘[XRHO] +;[a[x AT * X J—I—Z(@x ox, .xRiijJ+w
Xy [ X Hlxy ) [xe]={0]

If the random variables are small compared to the nominal variables

YEf([XN] ’[XR])‘[XR][0]+IZ}11:£%

® Xri J
Hlxy xR 0]

If the random variable are uncorrelated, it follows that

2
1 & | o
ey e "
v it | Flpe ) Ho)



Formalization of Statistical Analysis

;Y:j(xW,@Ny@gN;xmggmnxw):f(LXNL[Xk])

13|
E YI\% i=1 6xl~

Recall: o o x [Qf}z

q[\)
I

Thus: ;
o%,:{EZ([Sg

« Sensitivity analysis often used for statistical characterization of
filter performance

» This is often much faster and less tedious than doing the linearization
as described above though actually concepts are identical
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Stay Safe and Stay Healthy !







