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Statistical Characterization of 

Filter Characteristics
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Effects of manufacturing variations on components

➢ A rigorous statistical analysis can be used to analytically predict how 

components vary and how component variations impact circuit 

performance

➢ Monte Carlo simulations are often used to simulate effects of component 

variations 

➢ Often key statistical information is not readily available from the foundry

• Requires minimal statistical knowledge to use MC simulations

• Simulation times may be prohibitively long to get useful results

• Gives little insight into specific source of problems

• Must be sure to correctly include correlations in setup

Review from last lecture
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Modeling process variations in semiconductor processes 

xRPROC, xRWAFER, xRDIE, xRLVAR often assumed to be Gausian with zero mean

Magnitude of  xRLGRAD is usually assumed Gaussian with zero mean, direction 

is uniform from 0o to 360o
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LVAR Strongly dependent upon area and layout
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
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Relative size between σLVAR and σ|GRAD| dependent upon A, P, and process

Review from last lecture
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Modeling process variations in semiconductor processes 

• Statistics associated with matching/sensitive dimensionless parameters 

such as voltage or current gains, component ratios, pole Q, …  (almost 

always closely placed) dominated by xRLGRAD and xRLVAR (because locally xRPROC,

xRWAFER, xRDIE are all correlated and equal)

• Statistics associated with value of dimensioned parameters (poles, GB, 

SR,R,C,transresistance gains, transconductance gains, … dominated by 

xRPROC)

• Special layout techniques using common centroid approaches can be 

used to eliminate (or dramatically reduce) linear gradient effects so, if 

employed, matching/sensitive parameters dominated by xRLVAR but 

occasionally common centroid layouts become impractical or areas 

become too large so that gradients become nonlinear and in these cases 

gradient effects will still limit performance

• Gradients are dominantly linear if spacing is not too large

• Higher-order gradient effects can be eliminated with layout approaches that 

cancel higher “moments” but area and effort may not be attractive

Review from last lecture



Statistical Modeling of dimensioned parameters

Determine the standard deviation of the pole frequency (or band edge) of 

the first-order passive filter.

Assume the process variables are zero mean Gaussian variable 

with standard deviations given by 

0.2 0.1= =
RPROC RPROC

NOM NOM

R C

R C

 

Example:

1
p = 

RC

NOM RPROC RWAFER RDIE RLGRAD RLVARX = X + + + + +x x x x x

Assume further that the effects of all other random components can be neglected

Review from last lecture



Statistical Modeling of dimensioned parameters

Determine the standard deviation of the pole frequency (or band edge) of 

the first-order passive filter.

Assume the process variables are zero mean Gaussian variable 

with standard deviations given by 

Example (cont):

1
p = 

RC

R = RNOM+RPROC C = CNOM+CPROC

( )( )NOM PROC NOM PROC NOM NOM NOM PROC NOM PROC PROC PROC

1 1
p = 

R +R C +C R C R C C R R C
=

+ + +

• p is a multivariate random variable

• The pdf of p is extremely complicated 

Review from last lecture

0.2 0.1= =
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NOM NOM

R C

R C

 
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p = 

RC

Theorem:  The sum of uncorrelated Gaussian random variables is a 

multivariate Gaussian random variable

Theorem:  If X1 … Xm are uncorrelated random variables with standard 

deviations σ1, σ2, … σm, and a1,a2, … am are constants, then the standard 

deviation of the random variable                     is given by the expression                   
1
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Example (cont): Determine the standard deviation of the pole frequency 

(or band edge) of the first-order passive filter.



The random variable p can be approximated by  

1
p = 

RC

( )( )NOM NOM

1
p = 

R CRAN RANR C+ +

Unfortunately the pdf  p which is the reciprocal of the product of sums of 

Gaussian variables is very difficult to obtain.

Observe p can be expressed as:

( )( )
1 1

1 1NOM NOM NOM NOM

NOM NOM

1
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R C R C

R C

RAN RAN RAN RAN
R C R C

 
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Example (cont): Determine the standard deviation of the pole frequency 

(or band edge) of the first-order passive filter.

RAN NOM RPROC RWAFER RDIE RLGRAD RLVAR RAN NOM RPROC RWAFER RDIE RLGRAD RLVAR
R R R R R R R and C C C C C C C( )= + + + + + = + + + + +
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p = 

RC

( )( )
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But RRAN<<RNOM and CRAN<<CNOM

It thus follows from a truncated power series expansion of the two-variable fraction 

that 
1

1 1
NOM NOM NOM NOM

p  
R C R C

      
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RAN RANR C

These operations were used to  linearize p in terms of the random variables !

Note that p is the sum of two Gaussian random variables that are assumed to be 

uncorrelated so p is also approximately Gaussian

Determine the standard deviation of the pole frequency 

(or band edge) of the first-order passive filter.

Example (cont):

1
1

NOM NOM NOM NOM

p
R C R C
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− −  
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RAN RANR C

Neglecting the product of two small quantities



1
p = 

RC

1
1
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It thus follows from the theorem that
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But the nominal value of the pole is   
1
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p
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Observe:

Determine the standard deviation of the pole frequency 

(or band edge) of the first-order passive filter.

Example (cont):
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p = 

RC

2 2

NOM NOM NOM

p

p R C
RAN RANR C  +

But RRAN and CRAN are approximately RRPROC and CRPROC

0.2 0.1= =
RPROC RPROC

NOM NOM

R C

R C
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NOM NOM NOM

p

p R C

+
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recall

2 20.2 0.1 0.22

NOM

p

p

 + =

Determine the standard deviation of the pole frequency 

(or band edge) of the first-order passive filter.

Example (cont):



1
p = 

RC

2 20.2 0.1 0.22

NOM

p

p

 + =

1.  Determine the 3σ range in the pole location 

2.  Determine the percent of the process lots that will have a pole with  

mean that is within  10% of the nominal value

3.  What can the designer do to tighten the band edge of this filter?

Example (cont):
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p = 

RC

2 20.2 0.1 0.22

NOM

p

p
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1.  Determine the 3σ range in the pole location 

The 3σ range is simply   0.34 1.66
NOM

p

p
 

So, if the nominal pole location is 10KHz, the average value of the pole location 

from lot to lot will vary (in the 3σ sense)  between 3.4KHz and 16.6KHz 

Example (cont):
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2 20.2 0.1 0.22

NOM

p
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2.  Determine the percent of the process lots that will have a pole with  

mean that is within  10% of the nominal value

Observe a 10% window is  
.1

0.45
.22

NOM NOM

p p

p p
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= 
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x

f(x)

1-kσ 1+kσ1

Recall                                          For a kσ

window the probability of being inside that 

window is the area under the pdf curve 

between 1– kσ and 1+kσ
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Example (cont):
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RC
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2.  Determine the percent of the process lots that will have a pole with  

mean that is within  10% of the nominal value

Observe a 10% window is  
.1

0.45
.22

NOM NOM

p p

p p
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= 
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For a Gaussian variable, this area is given by

( ) ( ) 1prob N(0,1) N(0,1)θ = 2F k  -1 = 2F 0.45 −

1 0.45 1 0.45
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Example (cont):

p N(0,1)



Offset Voltage Distribution
Pdf of zero-mean Gaussian distribution

Percent between: ±σ 68.3%

±2σ 95.5%

±3σ 99.73%

x

f(x)

-kσ kσ
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p = 

RC

2 20.2 0.1 0.22

NOM

p

p
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2.  Determine the percent of the process lots that will have a pole with  

mean that is within  10% of the nominal value

( ) 1prob N(0,1)θ = 2F 0.45 −

x

f(x)

-1 1
-.45 .45

1 0.347probθ = 2 .6736• − =

Thus, approximately 35% of the wafer lots will 

have a pole within 10% of the nominal value
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2 20.2 0.1 0.22

NOM
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3.  What can the designer do to tighten the band edge of this filter?



R

Modeling process variations in semiconductor processes 

• Most characteristics of interest in a filter (and many other circuits) are highly 

nonlinear functions of multiple random variables

• Closed-form analytical expressions for pdf  is often extremely difficult to 

obtain

• For most practical circuits, random component is small compared to the 

nominal component

• Linearization of characteristics of interest for purpose of statistical analysis is 

usually quite accurate and drastically simplifies analysis

• Monte Carlo analysis is widely used for statistical characterization but is 

often very time consuming and gives little insight into design optimization



Statistical Modeling of Dimensionless Parameters

VIN

VOUT

R2

R1

2

1

R
K = 1+

R

A

1A 1A

1
p =

R C1

1
p =

RC
A 1

1

p -p
θ = 

p
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R2

R1

Statistical Modeling of dimensionless 

parameters - example

Determine the standard deviation of the voltage gain K

Determine the yield if the nominal gain is 10  1%

2

1

R
K = 1+

R

Aρ=.01µm 

Assume a common centroid layout of R1 and R2 has been used and 

the area of R1 is 100u2 and both resistors have the same resistance 

density and R2 is comprised of K-1 copies of R1 . Neglect variable 

edge effects in the layout

0.2
PROC

NOM

R

R

 =Assume also that: 

Aρ is the Pelgrom matching parameter
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Statistical Modeling of dimensionless 

parameters - example

Determine the standard deviation of the voltage gain K

2

1

R
K = 1+

R
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Statistical Modeling of dimensionless 

parameters - example

Determine the standard deviation of the voltage gain K

2

1

R
K = 1+

R

( )2 1

2N 1N

2N 2N
R R

1N 1N

R R
K  1+ +

R R

 
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R RR R

2 2 2 2  + +R RPROC RGRAD RLVARR R R R

1 1 1 1  + +R RPROC RGRAD RLVARR R R R

But R2RPROC and R1RPROC are correlated 

R2RGRAD and R1RGRAD are correlated 

And, since a common centroid layout 

is used, 

( )2 11 RPROC N RPROCR K R= −

( )2 11 RGRAD N RGRADR K R= −

R2RLVAR and R1RLVAR are uncorrelated 

( )( )2 11
2N 1NN N R R

K  K + K − −R RR R

( )( )2 2 2 1 1 11
2N 1NN N R R

K  K + K
+ + + +

 − −RPROC RGRAD RLVAR RPROC RGRAD RLVARR R R R R R
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Statistical Modeling of dimensionless 

parameters - example

Determine the standard deviation of the voltage gain K

2

1

R
K = 1+

R

( )( )2 2 2 2 2 21
2N 1NN N R R
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( )( )2 11
2N 1NN N R R

K  K + K − −RLVAR RLVARR R

Since R2N=(KN-1)R1N

K not dependent on RRPROC !!
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Statistical Modeling of dimensionless 

parameters - example

Determine the standard deviation of the voltage gain K

2

1

R
K = 1+

R

( )( )2 11
2N 1NN N R R

K  K + K − −RLVAR RLVARR R

2 20.2 0.1 0.22

NOM

p

p
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2 1

2 21

R R2N 1N
N

K

NK

  1
K

  
 

 − + 
 

R RR R

Recall: (p was the  pole of a dimensioned parameter)



Theorem:   If the perimeter variations and contact resistance are neglected, 

the standard deviation  of the local random variations of a resistor of area A is 

given by the expression

N

R

R

A
 =

A




Theorem:   If the perimeter variations are neglected, the standard deviation  of 

the local random variations of a capacitor of area A is given by the expression

N

C

C

A
 =

A

C

Note both of these expressions are independent of the value of R and C

Statistical characterization of local random 

variations of resistors and capacitors 

Aρ is a constant (has dimensions of µm) and is not related to area!

AC is a constant (has dimensions of µm) and is not related to area!



Theorem:   If the perimeter variations are neglected, the variance of the local 

random variations of the normalized threshold voltage of a rectangular MOS 

transistor of dimensions W and L  is given by the expression

WLV

A
2

T

2

VTO2

V

V

NNT

T
=

WL

A2

VT2

V

V

NT

T
=or as

Statistical characterization of local random 

variations of MOS transistor parameters 

Theorem:   If the perimeter variations are neglected, the variance  of the local 

random variations of the normalized  COX of a rectangular MOS transistor of 

dimensions W and L  is given by the expression

WL

ACOX

C

C

OXN

OX

2
2 =

WL

A2

2

N

R





 =

Theorem:   If the perimeter variations are neglected, the variance  of the local 

random variations of the normalized mobility  of a rectangular MOS transistor 

of dimensions W and L  is given by the expression

where the parameters AX are all constants characteristic of the process 

(i.e. model parameters)



WL

ACOX

C

C

OXN

OX

2
2 =

WL

A2

2

N

R





 =

• The effects of edge roughness on the variance of resistors, capacitors, and 

transistors can readily be included but for most layouts is dominated by the 

area dependent variations

• There is some correlation between the model parameters of MOS transistors but 

they are often ignored to simplify calculations

Statistical characterization of local random 

variations of MOS transistor parameters 

WLV

A
2

T

2

VTO2

V

V

NNT

T
=

N

R

R

A
 =

A




N

C

C

A
 =

A

C

• The parameters Aρ, AC, Aµ, ACOX, and AVT0 are often termed “Pelgrom” 

parameters and are part of the PDK of a process

Sept 2020
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Statistical Modeling of dimensionless 

parameters - example

Determine the standard deviation of the voltage gain K

2

1

R
K = 1+

R

( )( )2 11
2N 1NN N R R

K  K + K − −RLVAR RLVARR R

( ) 2 1

2 21
R R2N 1N

K N  K   − +R RR R
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R

R

A
 =
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


( )1K N

R2 R1

1 1
  K A

A A
  − +

( )
( )

1
1

K N

N R1 R1

1 1
  K A

K A A
  − +

−
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Statistical Modeling of dimensionless 

parameters - example

Determine the standard deviation of the voltage gain K

2

1

R
K = 1+

R

( )
( )

1
1

K N

N R1 R1

1 1
  K A

K A A
  − +

−

( )
( )

( )
( )

1 1 1
1 1

N
K N N

N NR1 R1

A A K1
  K K

K KA A

 
  − + = −

− −

( )1K N N

R1

A
 K K

A


  −

N

K

NK R1

A 1
 1-

KA


 
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Statistical Modeling of dimensionless 

parameters - example

Determine the standard deviation of the voltage gain K

2

1

R
K = 1+

R

( )1K N N

R1

A
 K K

A


  − Aρ=.01u AR1=100u2

0.2
PROC

NOM

R

R

 =

( ) ( )1 .001 1
10

K N N N N

.01
 K K K K  − = −

.001

N

K

NK

1
 1-

K
 

• Note the standard deviation of the normalized gain is much smaller 

than the standard deviation of the process variations

• The standard deviation can be improved by increasing area but a 4X 

increase in area is needed for a 2X reduction in sigma
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Statistical Modeling of dimensionless 

parameters - example

Determine the standard deviation of the voltage gain K

2

1

R
K = 1+

R

.001

N

K

NK

1
 1-

K
 

Determine the yield if the nominal gain is 10  

.001 .00095

N

K

K

1
 1-

10
  =

1%

( )00095
N

K
 N 1,  0.

K

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Statistical Modeling of dimensionless 

parameters - example

2

1

R
K = 1+

R

Determine the yield if the nominal gain is 10  1%

( )
N

K
 N 1,  0.00095

K


9.9  < K < 10.1

N

K
.99  <  < 1.01

K

N

K
 -1

K
-10<  < 10

.00095

( )
1

N

K

K
 N 0,1

0.00095

−



N

K
-.01<  -1< .01

K

The gain yield is essentially 100%

Could substantially decrease area or increase 

gain accuracy if desired

These are 10 

sigma values !
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Statistical Modeling of dimensionless 

parameters - example

Determine the yield if the gain is to be 10  1%

2

1

R
K = 1+

R

Aρ=.025µm 

Assume a common centroid layout of R1 and R2 has been used and 

the area of R1 is 10u2 and both resistors have the same resistance 

density and R2 is comprised of K-1 copies of R1 . Neglect variable 

edge effects in the layout

0.2
PROC

NOM

R

R

 =

Note this is simply a 10X reduction in area from previous example  and an 

increase in Ap by a factor of 2.5
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Statistical Modeling of dimensionless 

parameters - example

Determine the standard deviation of the voltage gain K

2

1

R
K = 1+

R

( )1K N N

R1

A
 K K

A


  − Aρ=.025um AR1=10um2

0.2
PROC

NOM

R

R

 =

( ) ( )1 .0079 1
10

K N N N N

.025
 K K K K  − = −

.0079

N

K

NK

1
 1-

K
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Statistical Modeling of dimensionless 

parameters - example

Determine the standard deviation of the voltage gain K

2

1

R
K = 1+

R

.0079

N

K

NK

1
 1-

K
 

Determine the yield if the gain is to be 10  

.0079 .0075

N

K

K

1
 1-

10
  =

1%

( )
N

K
 N 1,  0.0075

K

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Statistical Modeling of dimensionless 

parameters - example

2

1

R
K = 1+

R

Determine the yield if the nominal gain is 10  1%

( )
N

K
 N 1,  0.0075

K


9.9  < K < 10.1

N

K
.99  <  < 1.01

K

N

K
 -1

K
-1.33<  < 1.33

.0075

( )
1

N

K

K
 N 0,1

0.0075

−



N

K
-.01<  -1< .01

K

( )N(0,1)Y = 2F 1.33 -1 = 2*.9082-1  = 0.8164

Dramatic drop from 100% yield to about 82% yield!

Have dropped from 10 sigma 

to 1.33 sigma boundaries



Statistical Modeling of Filter Characteristics

The variance of dimensioned filter parameters (e.g. ω0, poles, band edges, …) 

is often very large due to the process-level random variables which dominate 

The variance of dimensionless filter parameters (e.g. Q, gain, …) are often 

quite small since in a good design they will depend dominantly on local random 

variations which are much smaller than process-level variations 

The variance of dimensionless filter parameters is invariably proportional to the 

reciprocal of the square root of the relevant area and thus can be managed 

with appropriate area allocation



Linearization of Functions of a Random Variable

• Characteristics of most circuits of interest are themselves random variables

• Relationship between characteristics and the random variables often highly 

nonlinear

• Ad Hoc manipulations (repeated Taylor’s series expansions) were used to 

linearize the characteristics in terms of the random variables

• This is important because if the random variables are uncorrelated the 

variance of the characteristic can be readily obtained 

• This approach was applicable  since the random variables are small

• These Ad Hoc manipulations can be formalized and this follows
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Formalization of Statistical Analysis

( )    ( )1 2 1 2, ,... ,: , ,... ,N N nN R R nR N RY f x x x x x x f X X= =
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This can be expressed in a multi-variate power series as

If the random variable are uncorrelated, it follows that

If the random variables are small compared to the nominal variables
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Formalization of Statistical Analysis
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Thus:

• Sensitivity analysis often used for statistical characterization of 

filter performance

• This is often much faster and less tedious than doing the linearization 

as described above though actually concepts are identical
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Stay Safe and Stay Healthy !



End of Lecture 14


